
PARALLELIZED IMPLEMENTATION OF THE CCSD(T) METHOD IN
MOLCAS USING OPTIMIZED VIRTUAL ORBITALS SPACE AND
CHOLESKY DECOMPOSED TWO-ELECTRON INTEGRALS

Michal PITOŇÁKa1,b,*, Francesco AQUILANTEc, Pavel HOBZAb1,d,
Pavel NEOGRÁDYa2, Jozef NOGAe,f and Miroslav URBANa3,g

a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences,
Comenius University, Mlynská Dolina, SK-842 15 Bratislava, Slovak Republic;
e-mail: 1 pitonak@fns.uniba.sk, 2 neogrady@fns.uniba.sk, 3 urban@fns.uniba.sk

b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i.
and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,
166 10 Prague 6, Czech Republic; e-mail: 1 pavel.hobza@uochb.cas.cz

c Department of Physical and Analytical Chemistry, Quantum Chemistry, Uppsala University,
P.O. Box 518, SE-75120 Uppsala, Sweden; e-mail: francesco.aquilante@gmail.com

d Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
e Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University,

SK-842 15 Bratislava, Slovak Republic; e-mail: jozef.noga@fns.uniba.sk
f Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava,

Slovak Republic
g Slovak University of Technology in Bratislava, Faculty of Materials, Science and Technology

in Trnava, Institute of Materials, J. Bottu 24, SK-917 24 Trnava, Slovak Republic

Received February 25, 2011
Accepted April 7, 2011

Published online May 4, 2011

This paper is dedicated to Dr. Zdeněk Havlas on the occasion of his 60th birthday. The novel, robust
implementation of the CCSD(T) method, described in this paper, was motivated by the ambition to
extend the applicability of the highly correlated calculations in the area of noncovalent interactions –
one of the major fields of Dr. Havlas’s scientific interest. It is indisputably his personal credit that
these methods were successfully applied to challenging biological problems on the ground of the
Institute of Organic Chemistry and Biochemistry of the Academy of Science of the Czech Republic. We
appreciate his pioneering contribution in this field as well as his generous support for our projects
during the past years.

Parallelized implementation of the coupled cluster singles doubles with non-iterative triples
in the MOLCAS program suite is described. The code benefits from the Cholesky decomposi-
tion of two-electron integrals and the algorithm is particularly designed for calculations us-
ing reduced optimized virtual orbital space. Different aspects of parallelization and its
efficiency are discussed based on our recent successful calculations for medium sized mole-
cules involving more than 1000 basis functions.
Keywords: Ab initio calculations; Electronic structure; Quantum chemistry; Coupled cluster;
Cholesky decomposition; Parallelization; Noncovalent interaction; MOLCAS.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 713

© 2011 Institute of Organic Chemistry and Biochemistry
doi:10.1135/cccc2011048

Without doubt, nowadays widely used coupled cluster (CC) approach in-
cluding single, and double excitations with perturbative correction for tri-
ple excitations (CCSD(T))1 proved to be one of the most reliable methods
for a treatment of the electronic structure of molecules. This holds, despite
its routine applicability is still limited. From the conceptual point of view it
is a limitation to molecular ground states (or more generally, the lowest
states within each symmetry representation) and to systems for which these
states are strongly dominated by a single (reference) determinant2. From
the computational point of view, the most severe limitation results from
the steep scaling of CCSD(T) with respect to the number of basis functions
(N) and number of correlated electrons involved in the calculation. Let O
and V denote the number of correlated occupied orbitals (OOs) and the
number of active virtual orbitals (VOs), respectively. It is notoriously
known that CCSD involves steps that formally scale as ∝O3V3, ∝O2V4 and
∝O4V2 in the iterative manner and the correction for triples includes even
more steep ∝O3V4 and ∝O4V3 dependences.

As discussed in several studies (see e.g. ref.3), this ∝N6 (or ∝N7) scaling
does not reflect the physical nature of the interaction between electrons
(and nuclei) and a natural way to tackle larger systems with the CC meth-
ods would be exploitation of the short-range/local nature of the elec-
tron-electron correlation. There has been a lot of work done in this field
(see e.g. refs4–9) resulting in several quite successful implementations. How-
ever, these methods are still far from being “black-box”, often primarily
limited by not so straightforward control of accuracy. Their most effective
use applies to systems with naturally localized bonds.

A different aspect related to the dynamical electron correlation is a very
slow convergence of the results with the increasing one-particle (atomic)
orbital basis sets (AO). This aspect can be quite effectively treated within
the explicitly correlated CC R12 ansatz of the wave function10,11. Latest
development of this theory using alternative Slater type geminal correla-
tion factors has proven the potential of this theory, when using basis sets of
triple-zeta quality provided results equivalent to a conventional treatment
using pentuple-zeta basis sets12–15. At the same time, the overall computa-
tional costs in CCSD(T)-R12 can be kept comparable with the conventional
CCSD(T) using the same AO basis.

Feasible future applications of the CC theory on large molecular systems
will likely combine both of the aforementioned treatments. Immense devel-
opment in computer technologies, especially parallel systems, opens a pos-
sibility to apply the CCSD(T) approach to medium sized systems without
approximations. Until recently, however, the computer implementations of

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

714 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

this theory were far from being optimized for these new technologies.
Though “medium-sized” systems (say ~50 correlated OOs, ~500 VOs) are
still within the reach of the well established standard CC (usually AO
integral-direct based) CC codes of the last two decades, their robustness,
(parallel) efficiency and memory demands turns out to be inadequate. Nev-
ertheless, some recent new implementations e.g. by Janowski et al.16 or
Olson et at.17, still based on AO integral-direct approach, Valiev et al.18 or
Lotrich et al.19 are capable to treat systems with more than 1000 basis func-
tions with the mentioned number electrons in a feasible manner.

Successful applications during past few years20–23 proved that our imple-
mentation within the MOLCAS program suite belongs to this category
as well. Here, we shall describe our implementation that is aimed for
“medium-sized” systems being slightly different from the aforementioned
ones. This article complements the recent report on the MOLCAS7 release24.

At variance to some other modern implementations, our remains in the
frame of molecular orbitals (MO) based formulation. The I/O bottleneck po-
tentially arising from the storage of 2-electron MO integrals over four VO
indexes is overcome by using the idea of Rendell et al.25, however, employ-
ing Cholesky decomposition instead of the density fitting approximation.
The main reason why we decided to “stay on the MO ground”, is the
straightforward possibility to combine the CC code with the truncated sets
of optimized virtual orbitals (OVOS)26 (or other type of modified VOs, like
frozen natural orbitals (FNO)27,28. Another, although not so crucial argu-
ment for staying with the MO approach is the numerical stability related to
the problem of linear dependences within the AO basis set.

Our OVOS method was described and tested on various applications29,30

from which clearly follows that indeed immense computational savings can
be achieved due to the reduction of the number of VOs. This is true espe-
cially when the main computational AO set is larger, i.e. for instance start-
ing from triple-zeta quality in the hierarchy of correlation consistent basis
sets31. The main idea of the OVOS approach is to unitary transform the ca-
nonical VOs in such a way that the resulting optimized orbitals form (usu-
ally much) more efficient “basis” for the expansion of the first order
correlated wave-function. As it has been shown in several qualitatively dif-
ferent applications, the desired high accuracy can be preserved if typically
30% of the optimized VOs is removed in calculations with (aug-)cc-pVTZ
basis, 40% with (aug-)cc-pVQZ basis, and even more when larger basis sets
are used. If moderate accuracy is sufficient, additional 10% of the OVOS
can be still removed at each cardinal number of the (aug-)cc-pVXZ hierar-
chy.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 715

CCSD ALGORITHM

Basic Equations

Since the details of the CCSD theory are known from many previous works,
let us restrict ourselves to a schematic overview using spin orbitals. In our
implementation, we closely followed the closed shell formulation by
Scuseria et al.32 that does not need to be repeated here. Using reference
determinant Φ, the amplitudes (t) of the excitation operators $T1 and $T2 of
the CCSD wave function

Ψ ΦCCSD = +exp($ $)T T1 2 (1)

can be iteratively determined as

D t Hi
a k

a
i

d
k

a
i() (

~
)() ()+ =1 (2)

D t H H tij
ab k

ab
ij

T
k

ab
ij k

mn
ij k() (

~
) (

~
) (() () () ()+ = +1

1

1
2

) (
~

) ()() ()
ab
mn

A

k
km
ce k

cf
kn

mn
ij

ab
ef

A

H t

00

1 2444 3444
+ δ δ

v 0

1 24444 34444
+

+ −1
2 1

(
~

) () (
~

) (() () ()H t HT
k

ab
cd k

cd
ij

A

d
k

k
m

vv

1 2444 3444
t H tk

ab
kn

mn
ij

A

d
k

e
c

cf
ij

ab
ef

Av

() ()) (
~

)δ δ
0

1 2444 3444 1 2
+

44 344
(3)

where we have used pertinent matrix elements of the effective Hamiltonians

~
exp($) $ exp($)() () ()H T H TT

k k k

1 1 1= − − (4)

~
exp($ $) $ exp($ $)() () () () ()H T T H T Tk k k k k= − − − +1 2 1 2 (5)

~
exp($ $)($ $)exp($ $() () () () (H T T H F T Td

k k k
d

k= − − − − +1 2 1 2
k)) (6)

with $Fd being the diagonal part of the Fockian with matrix elements f p
p .

D f f f fij
ab

i
i

j
j

a
a

b
b

...
...= + + − − − (7)

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

716 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

δ δ δ δ δpq
rs

p
r

q
s

p
s

q
r= − (8)

Summation over the repeated indices is assumed on the r.h.s. of the equa-
tions. Indexes i, j, ..., n and a, b, ..., f denote OOs and VOs, respectively,
while p, q, ..., s denote molecular orbitals in general.

Irrespectively from the details, for our typical target systems the com-
putationally most demanding part is the Avv term which involves 2-electron
integrals over four virtual indices. If these are stored, the I/O and storage
demands raise enormously with the size of the system as ∝V4 and the calcu-
lations become soon prohibitive. One of the ways to overcome this bottle-
neck is to calculate the Avv term using the 2-electron integrals over AO’s
generated “on-the-fly” whenever needed33–35. Actual number of calculated
integrals can be efficiently reduced by applying prescreening techniques36,37.

Cholesky Decomposition

A different approach to overcome I/O bottlenecks due to two-electron
integrals goes through the concept of “density fitting” (DF)38. The idea is
that of approximating the AO products |µν) with an expansion over a set of
auxiliary Gaussian basis functions, and it relies on the fact that the number
of auxiliary basis functions required for a reasonable accuracy is much
smaller than the total number of AO products. The expansion coefficients
are obtained by minimizing the “distance” (in Hilbert space) between the
fitted and the actual AO products. To define this distance, the coulombic
metric (1/r12) is the one typically used, whereas complete freedom is left in
the choice of the auxiliary basis set. In a formulation of DF that has become
popular over the years with the name of “resolution-of-the-identity” (RI)39,
the auxiliary basis sets are designed for each AO basis through data-fitting
of specific energy contributions – e.g., second-order Møller–Plesset (MP2)
correlation energy – and then used to calculate the two-electron integrals
over AOs (µ, ν, ...) as

(|)µ λσ µ λσv R Rv
P P

P

≈ ∑ (9)

R v Q G G P Qv
P

PQ PQ
Q

µ µ= =−∑ (|)() ; (|)/1 2 (10)

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 717

where P, Q denote functions in the auxiliary basis set. On the other hand, it
has been shown38 that the generation of the auxiliary basis set in DF can be
made without data-fitting if one exploits the onset of numerical linear de-
pendence in the AO product basis itself. This type of ab initio DF originated
in the earlier idea40,41 of approximating the two-electron integral matrix by
an incomplete Cholesky decomposition (CD), thus Eq. (9)

(|)µ λσ µ λσv L Lv
m m

m

M

=
=

∑
1

(11)

where L’s are the so-called Cholesky vectors (ChVs). The number of ChVs,
M, varies between 4–6 times the number of functions in the AO basis set for
very accurate calculations42. The main advantage of standard CD over RI
approximation is that one can effectively control the accuracy of the inte-
gral representation by means of the threshold used for the incomplete de-
composition. This is a very important property especially in the context of
the CC hierarchy of methods, as it helps preserving the systematic im-
provability of such quantum chemical models. On the other hand, the gen-
eration of the ChVs through CD of the two-electron integral matrix is in
general more time-consuming than computing the R’s vectors through
Eq. (9). The use of ab initio DF removes this bottleneck by requiring only
CDs of each atomic subblock of the integral matrix43 to define the auxiliary
basis set needed in Eq. (9). Next to the computational advantage, this type
of ab initio DF guarantees in practice the same accuracy control as in stan-
dard CD, and it has opened the way for the definition of analytical deriva-
tives of the ChVs 44.

In our current implementation of the CCSD algorithm, the standard CD
approximation41 is used. On the other hand, the algorithm is designed to
work just as well with any DF integral representation if the R vectors are
made available. As already mentioned, our algorithm is MO based which
means that we work with ChVs transformed to the MO basis. Compared to
much more demanding parts (vide infra), this ∝N3M scaling of the transfor-
mation procedure requires a negligible fraction of the computer time.

Unlike in Hartree–Fock (HF) and Kohn–Sham density functional theory
(KS-DFT), the integral representations of Eq. (9) and Eq. (11) do not open a
possibility to factorize the computationally most demanding terms in
CCSD, and leave unaltered the formal ∝N6 scaling of the number of float-
ing point operations. This is due to the fact that, say in Avv, reconstruction
of integrals from the ChVs prior to the contraction with the t amplitudes is

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

718 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

more efficient than the contraction of t with ChVs followed by the subse-
quent contraction of the resulting intermediate again with the ChVs. Direct
contraction of amplitudes with ChVs can reduce the scaling of the given
term, if both molecular orbital indexes of Lp q

m
, are contracted simultaneous-

ly, what is however not in general the case for Avv. It remains unexplored
the idea45 to reduce the computational scaling of CCSD by extracting a
“nonredundant” subset of the doubles manifold through CDs of properly
chosen (metric) matrices. Nevertheless, CD offers an interesting possibility
to substantially alleviate the ∝N4 scaling of the storage requirements. In
particular, this is crucial when there is a good reasoning to work with the
MO based algorithm (e.g. use of OVOS). For illustration, Table I shows the
theoretical progression of the storage requirements for systems with in-
creasing number of electrons and/or basis functions.

As it is evident, with nowadays standard computers (4-8Gb RAM) several
∝O2V2 size objects can be kept in core for calculations up to about 1000 ba-
sis functions and not too many electrons. About 800–1000 basis functions
is more or less the upper limit for full (effective) storage of V4 2-electron
integrals on a disk. However, it is not only the storage itself, but mainly the
related I/O operations count that slows down the calculations considerably.
The difference with the demands to store the ChVs is more than evident.

Virtual Orbital Space Segmentation

Our basic philosophy in the present CCSD code can be summarized as
“flexible adjustment to the available RAM and to the number of parallel
processors”. This is accomplished via splitting the VO space into N′ seg-
ments of V′ (or less) VOs. For instance, the t ab

ij biexcitation amplitude ma-
trix (Tνν

00) then splits into N′(N′+1)/2 blocks.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 719

TABLE I
Typical sizes of objects (in GB) appearing in the CCSD calculation for selected model systems

Objects | Scaling
OOs
VOs
ChV (M)

20
500

2500

40
500

2500

40
800

4000

80
1200
6000

Tij
ab; (ai|bj) | O2V2/2 0.4 1.5 3.8 34.3

(ab|cd) | V4/8 58.2 58.2 381.5 1931.2

ChV Lpq
m | MN2/2 0.3 0.3 1.3 4.6

T

T

T T

T T T

vv
00

11
00

21
00

22
00

N 1
00

N 2
00

N N
00

=

′ ′ ′ ′

M M M

...

(12)

For a closed shell case, the lower triangle of the matrix is relevant because
of the permutation symmetry of the amplitudes t tab

ij
ba
ji= . Each block of

the amplitudes TA B
00

′ ′ contains all t ab
ij with a A V A V∈〈 ′ − ∗ ′ + ′∗ ′〉() ,1 1 and

b B V B V∈〈 ′ − ∗ ′ + ′∗ ′〉() ,1 1 . Similarly, all other quantities are stored, e.g. ChVs
transformed to MO basis for various combinations of occupied and virtual
indices L0 ij

m , L1ai
m , L2ab

m (0, 1 and 2 denotes the number of VO indexes).
For certain terms, several V4 integral/intermediate blocks should simulta-

neously be kept in core. Certainly, this part is (much) more memory de-
manding than other terms involving integrals that bear also indices of OOs.
If we would restrict ourselves to a single segmentation of the virtual space,
the maximum block of (V′)4 would determine the memory demand. How-
ever, in such case this would be an unnecessary fine segmentation for the
aforementioned, less memory demanding quantities. As a consequence, the
too small segments would decrease the efficiency of the related matrix mul-
tiplications and I/O traffic. In order to keep the possibly highest efficiency
with the available core memory, we have introduced a second level seg-
mentation, merely related to V4 integrals (labeled N″). This means that each
segment of VO space, containing V′ orbitals can be further split into N″
parts.

Two Alternative Computational CCSD Schemes

Irrespective of the VO space segmentation, the closed shell CCSD formula-
tion as given by Scuseria et al.32 provides the base for minimal operation
count algorithm. Disregarding the ∝N5 dependences, the floating point op-
erations count is dominated by ∝4 O3V3, and ∝O2V4/4 steps and a multiple
reading of O2V2 size data. The real cost depends on the actual O/V ratio,
and, if O ≥ 1/16 V (for instance, O = 50 and V = 800), 4 O3V3 represents
more arithmetical operations than O2V4/4 step. In addition to a standard
algorithm32, reconstruction of integrals over MOs from the ChVs must be
considered. For our target systems it was feasible (and mostly advantageous)
to store on disk all the MO integrals that bear one or more indices of occu-
pied orbitals. Hence, those MO integrals are calculated in a single step prior

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

720 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

to the CC iterations and used whenever it is effective (up to terms, for
which it is more efficient to refactorize them via direct contraction of the
amplitudes and the ChVs). V4 MO-integral block evaluation involves at
least ∝1/8 MV4 operations. One has to keep in mind that as soon as M is
greater than 1/2 O2 – which is often the case – recalculation of V4 integrals
is more expensive than the subsequent O2V4/4 step. We have again adopted
a flexible strategy by implementing two algorithms that can be selected ac-
cording to the actual available computer resources. In the following we de-
note them as

– Algorithm “V” that starts from the MO integrals precalculated from
ChVs and stored locally on disk. This is the most efficient choice whenever
sufficient (and fast enough), preferably local, data storage is available.
Needless to stress that the pre-CCSD steps, like SCF, integral transformation
from AOs to MOs, and eventually OVOS (vide infra), are dramatically accel-
erated by the use of Cholesky decomposition. Moreover, the blocked-virtual
structure mentioned above is very easily manageable using blocked ChVs,
too. Efficient parallelization can be introduced, in particular regarding the
steps that involve (ab|cd) type integrals. Different blocks of the (ab|cd)
integrals can be calculated and stored on individual nodes and being used
on these nodes in each iteration (vide infra).

– Algorithm “M” when the four virtual-index integrals are reconstructed
“on-the-fly” from ChVs in each CCSD iteration. Of course, as compared to
“V”, this algorithm gives rise to a significant increase of the theoretical
prefactor in timing of each iteration 1/2 MV4 extra arithmetic operations.
However, the advantage of this algorithm resides in the minimum storage
requirements, absence of the preparation step present in algorithm “V” and
more efficient utilization of shared-memory parallelization on multi-core/
processor systems.

To illustrate the differences in implementations of algorithms “V” and
“M”, we can analyze the O2V4 term arising from Avv part of the double-
excitation equations, Eq. (3). According to algorithm of Scuseria et al.32,
product of (anti-)symmetrized (t1-contracted) 2-electron integrals, bcd

ab ,

b b bcd
ab

cd
ab

dc
ab() ()± = ±1

2
(13)

and τ-biexcitation amplitudes τ cd
ij ()τ cd

ij
cd
ij

c
i

d
jt t t= +

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 721

τ τ τcd
ij

cd
ij

cd
ji() ()± = ±1

2
(14)

is calculated via a symmetric, S, and skew-symmetric matrix A

b S Acd
ab

cd
ij

ab
ij

ab
ijτ = + (15)

defined as

S b bab
ij

cd
ab

cd
ij

c d
cc
ab

cc
ij

c

= + + + + +
>

∑ ∑2 () () () ()τ τ (16)

A bab
ij

cd
ab

cd
ij

c d

= − −
>

∑2 () ()τ . (17)

The left column in Table II schematically shows the “M” (“on-the-fly”)
algorithm, while the right column compares the integral precalculation al-
gorithm “V”. Obviously, there is a price to be pay for introducing the seg-
mentation of VOs. As it can be partially deduced from Table II, in both
algorithms certain I/O and CPU (arithmetic) operations overhead is un-
avoidable. This is summarized in Table III. In both algorithms, multiple
reading and writing of the T2 amplitudes depends on N′, i.e. the “large” seg-
mentation, while reading of V4 integrals in algorithm “V” and recalculation
of these integrals in algorithm “M” do not require any overhead. In the
case of algorithm “V”, there is a multiple reading of the OV3 integrals
which depends on both “large” and “small” segmentation, i.e. N′ and N″,
while in algorithm “M” “large” segmentation causes multiple reading of the
L1ai

m , and L2ab
m ChVs. The O3V3 term in CCSD equation suffers from the

same overhead for both algorithm, mainly 3N′ multiple reading of O2V2 ar-
rays or (N′+1) multiple reading of the L1ai

m ChVs of MOV size. The effect of
increasing both segmentations on “real” wall-clock timings is discussed in
Section CCSD – Parallelization Timings.

Parallelization

Parallelization of the code is based on the Global Arrays (GA)46 package. In
the present implementation we limited ourselves mostly to the GA “equiva-
lents” of the standard MPI directives. GA allocation of the arrays distributed
across the nodes was merely used in the perturbative triples section for cre-

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

722 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

ating “task lists”. A great advantage of such a pragmatic approach is in its
independence from the particular MPI implementation.

The first level parallelization does not rely on the standard “master-slave”
scheme, instead, all of the computer nodes are considered as equivalent. If
more cores/processors are available on a node, a second level parallelization

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 723

TABLE II
Schemes of the algorithms “M” (“on-the-fly” reconstruction of MO integrals) and “V” (inte-
gral precalculation) for calculation of the O2V4-scaling term. For simplicity some of the pro-
cesses that require less than ∝N5 arithmetical operations are omitted

Algorithm ″M″: Algorithm ″V″:

do a′=1,N′ do a′=1,N′

read L1a i
m

'

do b′=1,a′ do b′=1,a′

read Ta b
ij
' ' , L1b i

m
' read Ta b

ij
' '

make τ a b
ij

' ' ← Ta b
ij
' ' + Ta

i
' .Tb

j
' make τ a b

ij
' ' ← Ta b

ij
' ' + Ta

i
' . Tb

j
'

do c′=1,N′ do c′=1,N′

do d′=1,c′ do d′=1,c′

read and updatea L2 a d
m

' ' , L2 c d
m

' ' L2 a c
m

' ' , L2 b c
m

' '

for c″ in c′ segment for c″ in c′ segment

for d″ in d′ segment (c″≥d″, if c′=d′) for d″ in d′ segment (c″≥d″, if c′=d′)

read Tc d
ij
' ' ' ' ,Td c

ij
' ' ' ' read Tc d

ij
' ' ' ' ,Td c

ij
' ' ' '

for a″ in a′ segment for a″ in a′ segment

for b″ in b′ segment (a″≥b″, if a′=b′) for b″ in b′ segment (a″≥b″, if a′=b′)

read (b″d″|a″i),(a″c″|b″i),(a″d″|b″i),(b″c″|a″i)

read (a″c″|b″d″),(b″c″|a″d″)

update: (a″c″|b″d″) ← –(b″d″|a″i).Tc
i
' '

–(a″c″|b″i).Td
i
' '

mult: (a″c″|b″d″)=L2 a c
m

' ' ' ' . L2 c d
m

' ' ' ' update: (b″c″|a″d″) ← –(a″d″|b″i).Tc
i
' '

mult: (b″c″|a″d″)=L2 b c
m

' ' ' ' . L2 a d
m

' ' ' ' –(b″c″|a″i).Td
i
' '

update: T(+) c d
ij

' ' ' ' ← b(+)a b
c d

' ' ' '
' ' ' ' τ(+) a b

ij
' ' ' ' update: T(+) c d

ij
' ' ' ' ← b(+)a b

c d
' ' ' '
' ' ' ' τ(+) a b

ij
' ' ' '

update: T(-) c d
ij

' ' ' ' ← b(-)a b
c d

' ' ' '
' ' ' ' τ(-) a b

ij
' ' ' ' update: T(-) c d

ij
' ' ' ' ← b(-)a b

c d
' ' ' '
' ' ' ' τ(-) a b

ij
' ' ' '

end of a″,b″ loops end of a″,b″ loops

write Tc d
ij
' ' ' ' ,Td c

ij
' ' ' ' write Tc d

ij
' ' ' ' ,Td c

ij
' ' ' '

end of all other loops end of all other loops

a Update L2 by T1 contraction, e.g. L2 L1 T′ ′ ′ ′←a b
m

a i
m

b
i .

is achieved within each node by utilizing multi-thread BLAS routines.
Doing so, OpenMP parallelization of the matrix–vector (dgemv) and matrix–
matrix multiplication (dgemm) is automatically taken care of. Since the al-
gorithm is dominated by matrix–matrix multiplications, relatively high ef-
ficiency can be achieved on multi-core/processor nodes.

The first level – distributed memory – parallelization is tightly related to
the N′ segmentation of the VO space. As indicated in Table II, this is easily
realized via splitting the loops over the VO segments into independent par-
allel tasks. For most of the cases the distribution of these tasks is driven by
segmentation of the two outermost loops, however, for some O3V′3 terms it
is controlled via splitting of the uppermost and the third loops. Naturally,
all other loops over VOs within each parallel task are segmented as well.
Hence, for a certain N′ VO space segmentation there are (N′)2∝O4V′2,
(N′)2∝O3VV′2 and (N′)2/2∝O2V2V′2 independent tasks available for paral-
lelization. The terms scaling ∝N5 (not analyzed in details in this article) are
split into independent tasks analogously to the ∝O3V3/∝O4V2 scaling terms,
thus not affecting noticeably the overall parallel load-balancing. In order to
accomplish an ideal task distribution a specific number of nodes is related
to a given segmentation (Table IV). Each entry represents the relative effi-
ciency with respect to the “ideal” job distribution. At the end of each CCSD
iteration 1/2 O2V2 T2 amplitudes have to be gathered and redistributed over
all the nodes. This step can be a bottleneck mainly for large number of

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

724 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

TABLE III
Summarization of the most demanding I/O and arithmetical operation overhead resulting
from the VO segmentation in evaluation of O2V4-scaling terms for “V” and “M” algorithms.
(R) and (W) stand for read and write, respectively

Algorithm ″V″ Algorithm ″M″

I/O

1/4 N′(N′+1).O2V2 (R+W) 1/4 N′(N′+1).O2V2 (R+W)

∝N′N″.OV3 a (R) (N′+1).MOV (R)

1/2 V4 (R) ∝N′(N′+1).MV2 a (R)

Arithmetic

– 1/2 MV4

a Prefactor cannot be determined exactly, since the algorithm exploits certain redundancies
in reading, e.g. when the data are already loaded in the memory.

nodes connected via slow network, especially for smaller jobs with a rela-
tively small number of arithmetic/CPU operations.

The crucial pre-CCSD step in algorithm “V” includes precalculation of
integrals over the molecular orbitals from the ChVs. The idea behind the
parallelization of Cholesky decomposed 2-electron integral based modules
in MOLCAS (SCF, RASSCF, MP2, ...) is to generate, store and use the ChVs
by splitting the ChV auxiliary index (m′) over parallel nodes, with a local
dimension for m′ being Mlocal. For MO based CC calculation, however, al-
ternative strategy of parallelization must be applied. The efficiency of the
particular execution significantly depends on the number of nodes, net-
work bandwidth and the number of cores/processors per node.

1) When e.g. V4 MO integrals are required, they have to be reconstructed
from the partial contributions produced on each node, (a′b′|c′d′)′,

(|)′ ′ ′ ′ ′ = ′ ′
′

′ ′
′

′ =
∑a b c d L La b

m
c d
m

m

M

1

local

(18)

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 725

TABLE IV
Theoretical efficiency (in %) of the parallelization as a function of virtual orbital space seg-
mentation and number of the parallel computational nodes

N′ # of
task

Number of nodes

2 3 4 5 6 7 8 other

2 4a 100 67 100

2b 100 67 50

9 10 12 16

4 16a 100 89 100 80 89 76 100 89 80 67 100

8b 100 89 100 80 67 57 100 89 80 67 50

12 16 32 64

8 64a 100 97 100 98 97 91 100 89 100 100 100

32b 100 97 100 91 89 91 100 89 100 100 50

16 32 64 128

16 256a 100 99 100 98 99 99 100 100 100 100 100

128b 100 99 100 98 97 96 100 100 100 100 100

a Tasks scaling as ∝O3VV′2 or ∝O4V′2. b Tasks scaling as ∝O2V2V′2.

and summed up afterwards across all computational nodes. This algorithm
can be mainly efficient for modest number of nodes connected with fast
network, or for very large number of ChVs. The main drawback is the ne-
cessity to transfer a huge number of V4 MO integrals over the nodes.

2) In the second alternative, merely O2V2 or smaller blocks of 2-electron
integrals are calculated in parallel as in i) and subsequently stored on each
node. Other types of MO integrals (i.e. OV3 or V4) are precalculated on each
node from the complete set of ChVs gathered from all nodes. Naturally,
merely a fraction of these integrals is needed for a parallel subtask locked to
a particular node. This is typically an optimal choice. Optionally, all the
integrals can be precalculated in this manner. Obviously, by having the
“needed” fraction of integrals on each node means that one has to give up
the full integral permutation symmetry, which gives rise to doubled num-
ber of calculated integrals. This fact, together with some other unavoidable
duplicities makes this option disadvantageous for small number of parallel
nodes. By going to larger number of nodes the segmentation of the VO
space is increased and the data storage reduction on each node begins to
scale almost linearly with respect to Nnodes. In the limit of “infinite” num-
ber of nodes, which is practically achieved already at 32 nodes, only
V4/(2Nnodes) are needed to be stored on each node. As an example, the
CCSD calculation of benzene dimer in aug-cc-pVQZ basis set required only
140 GB of the local scratch space on each of the 242 parallel nodes, instead
of 4.8 TB the full set of the V4 integrals. This argument raises doubts about
the accepted opinion that large CCSD calculations can be solely carried out
within the integral-direct AO based approach.

Perturbative Correction Due to Triple-Excitations

The idea of VO space blocking has been essentially adopted from the algo-
rithm for triples as suggested earlier47. Despite formally the RHF based algo-
rithm comprises less operations, it turned out that even for the closed shell
case the UHF based algorithm can be more effective due to (i) the fact that
handling the permutation symmetry is much simpler, (ii) the simpler struc-
ture gives rise to much more effective use of the (second parallelization
level) BLAS3 matrix multiplications because of well defined and large
enough dimensions of the matrices and (iii) the formal reduction of the
number of operations via presummed matrices47 can be to a large extent
utilized without storing huge files.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

726 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

In this section we recapitulate the basic feature of the implementation as
it has been transfered to MOLCAS. The main contribution to the whole
“(T)” correction of CCSD(T)1

E(T) = ET(CCSD) + E EST DT
[] []5 4+ (19)

is the T(CCSD)48 given as

ET(CCSD) = D tijk
abc

ijk
abc

a b ci j k

()2

> >> >
∑∑ (20)

completed by the 5th order contribution

E t x x g tST a
i

i
a

i
a

jk
bc

abc
ijk

j k b ci a

[]

,,

;5 = =
> >
∑∑ (21)

and, when the f i
a ≠ 0, also the 4th order contribution49

E f y y t tDT i
a

a
i

a
i

bc
jk

abc
ijk

j k b ci a

[]

,,

;4 = =
> >
∑∑ . (22)

Computational demands are dictated by determining the t abc
ijk amplitudes,

in our algorithm calculated according to a very simple expression using
supermatrices

D t K Lijk
abc

abc
ijk

ab
lr

rc
mn

lmn
ijk

abc
def

lmndefr

O

= ∑∑
+

δ δ
V

∑ (23)

where matrices K and L

K K tab
ir

ba
ir

ab
ir= − = − for r O∈〈 〉1,

K K gab
ir

ba
ir

ab
i r O= = −() for r O O V∈〈 + + 〉1, (24)

L L grc
jk

rc
kj

rc
jk= − = for r O∈〈 〉1,

L L trc
jk

rc
kj

r O c
jk= − = −() for r O O V∈〈 + + 〉1, (25)

and

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 727

δ δ δ δ δ δ δstu
pqr

st
pq

u
r

st
qr

u
p

st
pr

u
q= + + . (26)

Within the UHF, or more generally “different orbitals for different spins”
based algorithm one has to calculate t abc

ijk for ααα (βββ) and ααβ (ββα) spin
case blocks while obviously those in parentheses are merely needed for the
true open shell systems.

In order to distinguish the spinorbitals in this section, we shall use capi-
tal letters to denote α spinorbitals, whereas lower case letters are reserved to
β spinorbitals. The ααβ block can be calculated as47

D t K K L LIJk
ABc

ABc
IJk

AB
IR

AB
JR

Rc
Jk

Rc
Ik

R

= + − +∑ ()() (27)

+ + − − +∑[()() ()(K K L L K K LAc
Ir

Ac
Jr

rB
kJ

rB
kI

r
Bc
Ir

Bc
Jr

rA
kJ − +LrA

kI)] (28)

+ − +∑ ()K L K LcA
kR

RB
IJ

cB
kR

RA
IJ

R

(29)

+ − +∑ ()K L K LAB
IR

Rc
Ik

AB
JR

Rc
Jk

R

(30)

+ − − +∑ ()K L K L K L K LAc
Ir

rB
kI

Bc
Ir

rA
kI

Ac
Jr

rB
kJ

Bc
Jr

rA
kJ

r

. (31)

At the first glance this unconventional formulation seems to be awkward
and overcomplicated. However, it gives rise to a substantial reduction of
floating point operations since individual terms under Eqs (30) and (31)
scale as ∝O2V3(O + V) and can be precalculated. By this trick the (leading)
number of operations for this spin block reduces from ∝2O3V3(O+V) to
∝5O3V3(O+V)/4, i.e. by a factor of 1.6. A similar trick can be done also for
the ααα (βββ) block reducing the formal scaling from ∝O3V3(O+V)/4 to
∝O3V3(O+V)/12.

Provided the K and L matrices are available on each node, our paral-
lelized algorithm for this part is schematically described in Table V. The
main advantage is that storage of terms in (Eqs (30)) and (31)) on disk is

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

728 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 729

TABLE V
Schematic description of the algorithm for the ααβ block of the T3 amplitudes and their
contribution to the total energy

convention: Z′ ∈ VO segment seg_Z′; Z=A,B,c

Step 1: Creation of the K and L matrices:

for fixed VO segments A′,B′: KA B
RM
' '> stored

for fixed VO segments c′, A′: Kc A
rM
' '/KC a

Rm
' ' stored

for VO segment A′/a′: LRA
M N

'
> stored; LrA

mM
' /LRa

Mm
' stored

Step 2: do seg_A′ = 1,N′; do seg_B′ = 1,seg_A′; do seg_c′ = 1,n′

parallelization here: round-robin - do_it on this node?

Step 3: if do_it = .true. - this step carried out on the node

loads LRA
M N

'
> ; LRB

M N
'
> ; LrA

mN
' ; LrB

mN
' ; LRc

Mn
'

loads KA B
RM
' '> ; Kc A

rM
' ' ; Kc B

rM
' ' ; gA B

M N
' '>

> ; gA c
Mn

' ' ; gB c
Mn

' '

do k=1, Oβ ; loads KA c
Rk

' ' ; KB c
Rk

' ' (fixed k)

Step 3a ΛA B c
M

' ' ' ← KA B
MR
' 'LRc

Mk
' + KA c

Mr
' 'LrB

kM
' – KB c

Mr
' 'LrA

kM
' [see (Eq. (30)) and (Eq. (31))]

Step 3b: do I = 2,Oα; do J = 1,Oα-1

T3(A′,B′,c′) ← ΛA B c
I

' ' ' – ΛA B c
J

' ' '

T3(A′,B′,c′) ← Kc A
kR
' 'LRB

IJ
' – Kc B

kR
' 'LRA

IJ
'

P(A′,B′,R) ← KA B
IR
' ' + KA B

JR
' ' Q(R,c′) ← LRc

Jk
' – LRc

Ik
'

T3(A′,B′,c′) ← P(A′,B′,R)*Q(R,c′)

P(A′,c′,r) ← KA c
Ir

' ' + KA c
Jr

' ' ; Q(r,B′) ← LrB
kJ

' – LrB
kI

'

T3(A′,B′,c′) ← P(A′,c′,r)*Q(r,B′)

P(B′,c′,r) ← KB c
Ir

' ' + KB c
Jr

' ' ; Q(r,A′) ← LrA
kI

' – LrA
kJ

'

T3(A′,B′,c′) ← P(B′,c′,r)*Q(r,A′)

Calculated energy contribution and T3(A′,B′,c′) ← T3(A′,B′,c′)/DIJk
A B c' ' '

Step 3c: Partial contributions to x(k,c′), x(I,A′), x(I,B′), x(J,A′), x(J,B′)

from T3(A′,B′,c′) [see Eq. (21)] and gA B
I J

' '>
> ; gA c

Ik
' ' ; gB c

Ik
' ' ; gA c

Jk
' ' ; gB c

Jk
' '

Partial contributions to y(k,c′), y(I,A′), y(I,B′), y(J,A′), y(J,B′)

from T3(A′,B′,c′) [see Eq. (22)] and KA B
I J
' '>
> ; KA c

I
' ' ; KB c

I
' ' ; KA c

J
' ' ; KB c

J
' '

enddo k; I; J

enddo seg_A′; seg_B′; seg_c′

Step 4: master: gathers energy contributions from nodes

gathers x and y and contracts with t and f [see Eq. (21) and Eq. (22)]

avoided and at the same time no repeated calculation of those terms is
needed. In the current version, the parallelization philosophy has been
taken as used in the DIRCCR12-OS code50, i.e. that the K and L matrices are
available for each node and the outer loops over the VO segments are con-
trolled via round-robin scheduling. Such algorithm is ideal even for hetero-
geneous computer grids or differently loaded nodes. Alternatively, K and L
matrices could be also distributed as the MO integrals in the previous sec-
tion, and the outer loops controlled via a preselected distribution of jobs.

For the ααα (βββ) block the situation is more complicated and usage of
the aforementioned trick requires huge intermediate matrices and the form-
al efficiency partially breaks off upon too many memory loading operations
that are slow. Since computation of the pertinent block even using an algo-
rithm based on direct utilization of Eq. (23) represents merely a minor part
of the whole contribution from triples, at the moment we have retained the
standard algorithm and have not worked out the code with the above men-
tioned trick. The level of parallelization remains as demonstrated for the
ααβ block.

OVOS Algorithm

Optimized virtual orbital space method developed by Adamowicz et al.51,52

reformulated and reimplemented by Neogrády et al.26 generates modified
VOs that accommodate more compact expansion of the correlated wave-
function. The actual algorithm is based on the iterative search for VOs that
maximize the overlap of the 1st order correlated wavefunction expanded in
the set of original and the truncated optimized VO space. In each iteration,
new optimized orbitals are obtained by diagonalizing of the matrix R

UTRU = λ (32)

where R implicitly depends on U

R t t Pa b ij
ca

ij
db

cd
cdij

* *
* *= ∑∑ (33)

P U Uab p a p b
p

= ∑ * *
*

. (34)

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

730 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

Asterisk superscript denotes virtuals that belong to the truncated optimized
VO space. Factorization of the Eq. (33) leads to ∝N5 (i.e. ∝O2V3) scaling pro-
cedure, which is by an order of magnitude faster then the consequent
CCSD step.

To be able to go beyond several hundreds of basis functions and routinely
carry out calculations with more than 2000 basis functions, similar VO in-
dex segmentation technique as in the CCSD step had to be introduced.
Since the OVOS procedure can be factorized to steps with a single internal
summation over VOs and the largest quantities that must be processed are
of O2V2 size, it was possible to use a scheme in which only a single virtual
index was segmented, while the second one had been left unsegmented for
these arrays. This enabled to reduce the I/O overhead and to increase the
robustness and the efficiency of the parallelized implementation.

In our closed shell algorithm, the calculation of R (see Eq. (33)) is actually
carried out as a factorization of

R ij a c ij b d ji b d P c d Da b ij
a c

* *
*[| * (| * | *) (,)] / (= 〈 〉 〈 〉 − 〈 〉2 Dij

b d

cdij

*)∑∑ . (35)

The scheme of the parallel algorithm for evaluation of R is depicted in
Table VI. Algorithm starts with a preparation of blocks of biexcitation am-
plitudes due to the selected segmentation on all nodes. Then, a list of vir-
tual segments (label as d′, see Table VI) is assigned to each node. From there
on, certain parts of the algorithm, like contraction of the amplitudes with
matrix P, creation of 2〈ij|b*d〉 – 〈ji|b*d〉, etc. are performed for one seg-
mented virtual index locked to particular node. Finally, the contributions
to the matrix R are evaluated as a contraction of two O2V′V matrixes
(see Step 2d of alg. in Table VI) and summed up and gathered from all the
nodes. Computationally insignificant steps, like the diagonalization of R
are then performed on each node in a replicant mode.

Numerical Tests and Performance

OVOS

For a large molecule, the time required for obtaining optimized VOs is ex-
pected to be almost negligible with respect to the total cost of the OVOS-
CCSD(T) calculation. Some examples illustrating scaling of the OVOS
method with the number of correlated occupied and virtual orbitals and

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 731

with the number of parallel computational nodes are shown in the Table VII.
Timings of the preparation step (O2V2 integrals precalculation from the MO
ChVs, etc.) significantly depend on the number of ChVs (as discussed in
Section Two Alternative Computational CCSD Schemes in algorithm “V”).
In calculations presented in Table VII, the simplest parallel algorithm for
OVOS was used, where the calculation on all nodes starts from the MO
transformed complete set of ChVs (VO|M). With fast enough internode
connection (≥1 Gb/s) more efficient algorithm is available which generates
the O2V2 integrals from ChVs with segmented auxiliary index in the first

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

732 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

TABLE VI
Scheme of the parallelized evaluation of R matrix – the core of the OVOS algorithm

Step 1: do a′=1,N′

Step 1a: do c′=1,N′

read (i,a′|j,c′) and divide by denominator

complete (i,j,a′,c) ← (i,a′,j,c′)

end do c′

Step 1b: for d′ on this node:

mult (i,j,a′,d′) ← (i,j,a′,c) . Pcd′

save (i,j,a′,d′) as record ″a′d′_rec″

next d′

end do a′

Step 2: for d′ on this node:

Step 2a: do b′=1,N′

read (i,b′,j,d′) from ″b′d′_rec″

complete (i,j,b,d′) ← (i,b′,j,d′)

end do

Step 2b: make (i,j,d′,b) ← 2(i,j,d′,b) – (j,i,b,d′)

Step 2c: do a′=1,N′

read (i,j,a′,d′) and divide by denominator

complete (i,j,d′,a) ← (i,j,a′,d′)

end do

Step 2d: mult Rab ← (i,j,d′,a) . (i,j,d′,b)

next d′

gather R matrix from nodes and redistribute it

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 733
T

A
B

LE
V

II
Il

lu
st

ra
ti

ve
ti

m
in

gs
fo

r
th

e
p

ro
ce

ss
es

in
vo

lv
ed

in
th

e
O

V
O

S
p

ro
ce

d
u

re
.

O
,

V
an

d
C

h
V

re
p

re
se

n
t

n
u

m
b

er
s

o
f

o
cc

u
p

ie
d

an
d

vi
rt

u
al

o
rb

it
al

s
an

d
th

e
n

u
m

b
er

o
f

C
h

o
le

sk
y

ve
ct

o
rs

,
re

sp
ec

ti
ve

ly

O
V

C
h

V
N

o
d

es
C

o
re

s/
C

PU
s

p
er

n
o

d
e

M
P2

p
re

p
ar

at
io

n
m

in
it

er
at

io
n

to
ta

l
sc

al
in

g

30
78

6
38

33
1a

4
8.

0
6.

8
4.

1
48

.0

30
14

19
69

68
1

4
35

.6
32

.8
19

.2
28

2.
4

2.
6b

42
78

6
38

33
1

4
9.

7
5.

7
8.

8
66

.0
2.

3c

42
86

2
34

84
8d

2
22

.6
e

31
.0

3.
3

67
.7

42
15

49
62

03
8

2
11

9.
8

16
7.

5
17

.5
44

3.
0

2.
85

b

55
12

03
61

47
1f

8
49

.4
24

.5
34

.9
33

3.
2

55
12

03
61

47
2

8
24

.3
22

.6
22

5.
2

1.
54

g

55
12

03
61

47
4

8
23

.6
16

.3
17

2.
2

2.
14

a
In

te
l

C
o

re
2

Q
u

ad
(4

C
o

re
s)

,
2.

4
G

H
z,

8
G

B
R

A
M

.
b

A
ss

u
m

ed
sc

al
in

g
fo

rm
u

la
kO

2 V
x .

c
A

ss
u

m
ed

sc
al

in
g

fo
rm

u
la

kO
x V

3 .
d

2×
It

an
iu

m
-2

(M
ad

is
o

n
),

1
.5

G
H

z,
1

0
G

B
R

A
M

.
e

T
im

in
g

o
n

1
n

o
d

e
(2

C
P

U
s)

.
f

2
×

In
te

l
X

eo
n

E
5

3
4

5
(4

C
o

re
s)

,
2

.3
3

G
H

z,
8

G
B

R
A

M
.

g
Pa

ra
ll

el
sc

al
in

g,
sp

ee
d

u
p

ag
ai

n
st

th
e

ru
n

o
n

1
n

o
d

e.

step similarly to Eq. (18), and then gathers the integrals from all the nodes.
Results also clearly show that the timing of a single OVOS iteration is com-
parable with the timing for the MP2 calculation. Since only a minimum
internode transfer (∝V2) is required after each OVOS iteration, almost linear
scaling with the number of nodes can be expected. However, from the tim-
ings presented in Table VII it is clear that only 65% speedup is gained from
going from one to two nodes, and 47% in going from one to four nodes.
This is a consequence of several cumulative factors, like domination of I/O
over CPU timing spent in the matrix–matrix multiplication very efficiently
parallelized on 8 cores via multi-thread BLAS routines and presence of some
parts that are either not fully parallelized or are executed in a replicant
mode (diagonalization of R, etc.). As aforementioned, further optimization
of the OVOS algorithm would not lead to any significant speedup in the to-
tal OVOS-CCSD(T) procedure, because the consequent steps scale with the
size of the system by one (CCSD) or two (CCSD(T)) orders of magnitude
steeper.

CCSD – Parallelization Timings

Speedup of a single CCSD iteration with increasing number of parallel
nodes is shown in Fig. 1. Two sets of data representing the wall-clock
speedup with respect to the calculation on 16 nodes are presented. One set

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

734 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

FIG. 1
Speedup of a single CCSD iteration calculation (algorithm “V”) with increasing number of par-
allel computer nodes. Speedup in arithmetic (i.e. CPU) and total wall-clock timings is shown

16 32 48 64 80 96 112 128
Number of parallel nodes

Sp
ee

d
-u

p

8

7

6

5

4

3

2

1

336 VO, arithm. wall
336 VO, total wall

555 VO, arithm. wall
555 VO, total wall

ideal scaling

is for a rather small calculation of the system with 30 correlated OOs and
336 VOs (benzene dimer, aug-cc-pVDZ basis set31), the other is for roughly
by 50% larger system of the same number of correlated OOs and 555 VOs
(benzene dimer, aug-cc-pVTZ basis set truncated by OVOS to ~70%). For
each system two curves are showed. One represents the speedup in the
“arithmetic” part of the CCSD iteration (including I/O overhead resulting
from VO segmentation), which is basically the calculation of all terms
(O3V3 and O2V4) without the network traffic due to summing up and redis-
tributing of the new excitation amplitudes over all the nodes. By showing
both the “arithmetic” and total wall-clock speedups we want to stress the
fact that by going to larger systems “arithmetic” part scales as ∝N6 while
the network traffic only as ∝N4. This is clearly demonstrated in comparison
of the speedups for smaller and larger systems. Scaling of the “arithmetic”
part for the larger system is almost linear (despite the I/O overhead result-
ing from larger VO segmentation) while the total speedup is improved only
from 38 to 63%. We can conclude, that our implementation is thus not
suitable for massively parallel calculation of “small” systems, but has the
capacity to achieve satisfactory efficiency for calculation of large systems
on a reasonable number of nodes, thanks to almost linear scaling of the
computationally more demanding (O3V3/O2V4) part.

As aforementioned, our implementation takes advantage of a composite
shared- and distributed-memory parallelization via multi-thread BLAS

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 735

FIG. 2
Timings of the preparation step (prior to the CCSD iterations) and the CCSD iteration for algo-
rithms “V” and “M” for increasing number of CPU cores per parallel process

2 3 4 5 6 7 8
Number of cores

Ti
m

in
g

,
s

14000

12000

10000

8000

6000

4000

2000

0

integral precalc. alg. V

iteration wall, alg. V
integral precalc. alg. M

iteration wall, alg. M

matrix–matrix multiplication routines (dgemm). Figure 2 shows the scaling
of the wall-clock time with increasing number of active CPU cores the inte-
gral precalculation step and for total CCSD iteration in “V” and “M” algo-
rithms. The integral precalculation step is insignificant in the algorithm
“M”, since all the V4 integrals are reconstructed “on-the-fly” within the
CCSD iterations. In algorithm “V”, 83% efficiency is achieved going from
2 to 4 cores and about 58% going to 8 cores, as measured with respect to
the theoretical speedup. Decreasing of the efficiency is related to the I/O
overhead, since writing of the produced portion of V4 integrals on the node
becomes limiting. More interesting is to look at the timings of the CCSD it-
eration. Efficiency of the algorithm “V” increases only slightly going from
2 to 4 and remains almost constant going to 8 cores. This has a lot of rea-
sons, the most important being probably the ratio of the time spent in
“arithmetics” versus I/O. Number of arithmetic operations is smaller com-
pared to the integral precalculation step and, on the other hand, the
amount of I/O is increased to 1/2 V4. More favourable algorithm for the
multi core/processor nodes is clearly the algorithm “M”. 88% efficiency in
going from 2 to 4 cores and 70% on 8 cores demonstrates the domination
of the “arithmetics” in the CCSD iteration. Overall timing of the iteration
on the 8 core nodes is now only slightly larger than the timing for the algo-
rithm “V”. The efficiency of the algorithm “V” on the multi-core/processor
nodes has a potential to improve with increasing of the calculated system
size due to the same interplay between the ∝N6 “arithmetics” and ∝N4 I/O.
Algorithm “M” is certainly promising for SMP or hybrid-SMP architectures.
Moreover, since algorithm “M” is purely matrix-matrix multiplication
based, constantly evolving multi-thread BLAS routines efficiency could
challenge the integral-direct AO based algorithms for medium sized systems.

To further validate the assumptions stated above, another example is
shown in Fig. 3 and Table VIII. In Fig. 3 two curves are displayed represent-
ing the relative speedup and timings of the “arithmetic” and the “parallel
overhead” part of the CCSD iteration. Calculation was done on 128 two-
processor nodes (dual Intel 1.5 GHz Itanium-2 Madison), QSNetII/Elan-4
~7 Gb/s network) for benzene dimer (30 OOs) and different number of VOs
versus calculation with 336 VOs. The speedup of the arithmetic part by in-
creasing the system size from 336 to 976 VOs, converges to a value close to
the number of processors/cores per node. The second curve corresponds to
the speedup and wall-clock timings of the network transfer. Compared to
the first curve, slowdown of the “overhead” part of the CCSD iteration is
much less pronounced – on this particular network – when compared to
the “arithmetic” part. Going from calculation with 762 to 976 VOs slow-

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

736 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

down of the “overhead” is practically constant, except for the “noise”
caused probably by an interference with other calculations simultaneously
running on the computer cluster. This supports our statement on increas-
ing the efficiency of the algorithm on SMP (or hybrid-SMP) architectures
with increasing the system size as a consequence of the increasing
“arithmetics” versus “overhead” ratio.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 737

FIG. 3
Speedup and wall-clock timings of the arithmetic part and complete CCSD iteration

336 496 656 816 976
Number of VO

Sp
ee

d
-u

p

2.0

1.5

1.0

0.5

0.0

arithm. wall time, min

1.0

overhead wall time, min

0.0
2.4

7.1

7.2

24.2
10.2

3.6

TABLE VIII
The wall-clock timings (in min) of the arithmetic part, overhead (“non-arithmetic” part) and
overall CCSD iteration for benzene dimer in OVOS-truncated aug-cc-pVXZ basis sets for sev-
eral parallel calculation setups

Nodes VOs N′a Wall clock
arithm.

Wall clock
overheada

Wall clock
total

32 336 16 2.7 0.8 3.6

128 555 16 3.7 2.4 6.1

128 976 16 24.2 7.2 31.3

242 762 22 6.6 13.3 19.9

242 1421 22 50.5 16.4 66.9

a Number of VO segments.

Table VIII presents a similar comparisons, but with different number of
the parallel nodes of the same architecture. Comparison for benzene dimer
calculation on 128 nodes of with 555 and 976 VOs (70% OVOS
aug-cc-pVTZ and cc-pVQZ basis set) shows that in the first case, the “over-
head” part of the CCSD iteration took almost 40% of the overall wall-clock
time, while in the second case (976 VOs) it was only 23%. Keeping in mind
the previous conclusions on close-to-linear scaling for the “arithmetic” part
of the CCSD iteration, this means a significant improvement in overall scal-
ing. For larger number of nodes, i.e. 242, and somewhat larger systems, 762
and 1421 (benzene dimer, aug-cc-pVTZ and aug-cc-pVQZ basis sets), the
improvement on scaling is even more apparent. The “overhead” on calcula-
tion with 762 VOs represented almost 70% of the total wall-clock time,
while for 1421 VOs it was only 25%.

Applications

The robustness and efficiency of parallel scaling of our (CD-OVOS)-
CCSD(T) implementation can be demonstrated on several successful appli-
cations done throughout the past few years20–23. Most of the applications
address the field of noncovalent interactions that are, for several reasons,
“ideal” candidates for large-scale CCSD(T) applications. Among other rea-
sons, noncovalent interactions are extremely challenging for accurate and
reliable description at a lower theoretical level then CCSD(T), investigated
systems are typically closed-shells of single-reference character and still not
sufficiently well treatable by local-correlation based linear-scaling ap-
proaches. At the same time, noncovalent interactions are particularly im-
portant in typical bonding situations in biomolecules53–55.

To such application belongs the benchmark calculations of the relative
stabilities of several conformations of benzene dimer complex20. Calcula-
tions up to aug-cc-pVQZ basis set level, with more than 1400 VOs, were
possible thanks to both the OVOS technique (truncation to about 850 VOs)
as well as the tunable memory/disk requirements facilitated by our code.
Interaction energy calculations of the uracil dimer in stacked and
hydrogen-bonded conformation21 (aug-cc-pVTZ basis set, 84 correlated
electrons, 920 VOs truncated to ~570 VOs using OVOS) and stacked com-
plex of methyladenine methylthymine22 (aug-cc-pVTZ basis set, 110 corre-
lated electrons, 1203 VOs truncated to ~750 VOs using OVOS) followed.

So far, the largest application carried out using our code was the CCSD(T)
analysis of the many-body effects in the stacked dimer of guanine...cytosine
(GCGC) hydrogen-bonded pairs23 in 6-31G**(0.25, 0.15) basis set (modified

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

738 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

6-31G** basis set, with increased exponents of the d-function on “heavy”
atoms, 0.25, and p-function on hydrogen, 0.15). To evaluate pair interac-
tion energies and the post two-body nonadditivity terms, calculation of six
dimers (all in supermolecular basis sets, 82–112 correlated electrons,
554–574 VOs), four trimers (140–154 correlated electrons, 525–535 VOs)
and a single tetramer calculation (196 correlated electrons, 496 VOs) had to
be done. The most demanding of these calculations, the GCGC tetramer,
was still feasible on available parallel supercomputer architecture within
reasonable time. A single CCSD iteration for the GCGC tetramer took about
1.17 h on 16 nodes (executed as 32 parallel processes), each constituted of
two quad-core CPUs (Quad-Core AMD Opteron 2354, 2.20 GHz), and the
overall wall-clock time for the CCSD step was less then one day (22.23 h).
Computational time for the triples step was roughly by an order of magni-
tude higher, 286 h, but executing the (T) step as nine independent parallel
jobs (each utilizing the same 32 parallel processes as in CCSD), made the
(T) step done within 30 h.

CONCLUSIONS

In this paper we discussed the ideas of implementation of new-generation
CCSD(T) code in MOLCAS program package. The driving force behind this
effort was to provide a computer program which significantly lowers the
demands on the computational resources (mostly the memory and disk stor-
age) as well as being capable of efficiently utilize the multi-core/processor
parallel architectures routinely available nowadays.

According to our preferences, we decided to stay as much as possible on
the “safe ground” of MO-based approaches, without introducing any ap-
proximations leading to loss of the control of accuracy. Essentially, the
only (controllable) approximation considered is the Cholesky-decomposi-
tion of the two-electron integrals, which was shown to be extremely benefi-
cial in elimination of the storage bottleneck. Segmentation of the VO index
in all important objects/intermediates is only a “technical” issue allowing
us to break down the algorithm to block operations. This way we can tune
the algorithm to fit basically in any (reasonably large) available computer
memory for merely small I/O and CPU overhead.

Block design of the algorithm is tightly bound to its efficient paral-
lelization. A particular segmentation of the VO index generates well de-
fined number of independent parallel tasks that can be distributed among
the computations nodes or parallel processes withing each CCSD iteration.
The network traffic inevitable for the exchange of information between the

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 739

parallel processes after each CCSD iteration was shown to scale two orders
of magnitude less steep than the CPU (or the “arithmetic”) portion. This
means that a proper balance between the number of parallel processes and
the size of the calculated systems can ensure efficient utilization of a com-
puter system with tens to hundreds of parallel computational nodes.

The OVOS technique is already known for its usefulness in many applica-
tions involving large VO spaces. From the point of view of the computa-
tional efficiency, use of OVOS leads to negligible computational overhead
in combination with post-MP2 correlated methods. Its novel, massively
parallel, Cholesky-decomposed two-electron based implementation makes
it applicable to systems with more then 2000 basis functions.

This work was supported by the Slovak Grant Agency VEGA under the contracts No. 1/0428/09
and No. 2/0079/09. Support from EURATOM, contract No. FU07-CT-2006-00441 is also gratefully
acknowledged. This work was also a part of research project No. Z40550506 of the Institute of
Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and was funded by
Grants No. LC512 and No. MSM6198959216 from the Ministry of Education, Youth and Sports of
the Czech Republic. The support of Praemium Academiae, Academy of Sciences of the Czech Republic,
awarded to P.H. in 2007 is also acknowledged.

REFERENCES

1. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989,
157, 479.

2. Neogrády P., Szalay P. G., Kraemer W. P., Urban M.: Collect. Czech. Chem. Commun.
2005, 70, 951.

3. Schütz M., Hetzer G., Werner H.-J.: J. Chem. Phys. 1999, 111, 5691.
4. Schütz M.: J. Chem. Phys. 2000, 113, 9986.
5. Schütz M., Werner H.-J.: J. Chem. Phys. 2001, 114, 661.
6. Subotnik J. E., Head-Gordon M.: J. Chem. Phys. 2005, 123, 064108.
7. Auer A. A., Nooijen M.: J. Chem. Phys. 2006, 125, 024104.
8. Christiansen O., Manninen P., Jørgensen P., Olsen J.: J. Chem. Phys. 2006, 124, 084103.
9. Flocke N., Bartlett R. J.: J. Chem. Phys. 2004, 121, 10935.

10. Noga J., Kutzelnigg W., Klopper W.: Chem. Phys. Lett. 1992, 199, 597.
11. Noga J., Kutzelnigg W.: J. Chem. Phys. 1994, 101, 7738.
12. Ten-no S.: Chem. Phys. Lett. 2004, 398, 56.
13. Tew D. P., Hättig C., Bachorz R. A., Klopper W. in: Recent Progress in Coupled Cluster

Methods (P. Čársky, J. Paldus and J. Pittner, Eds), p. 535. Springer, New York 2010.
14. Werner H.-J., Adler T. B., Knizia G., Manby F. R. in: Recent Progress in Coupled Cluster

Methods (P. Čársky, J. Paldus and J. Pittner, Eds), p. 573. Springer, New York 2010.
15. Noga J., Kedžuch S., Šimunek J., Ten-no S.: J. Chem. Phys. 2008, 128, 174103.
16. Janowski T., Ford A. R., Pulay P.: J. Chem. Theory Comput. 2007, 3, 1368.
17. Olson R. M., Bentz J. L., Kendall R. A., Schmidt M. W., Gordon M. S.: J. Chem. Theory

Comput. 2007, 3, 1312.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

740 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

18. Valiev M., Bylaska E. J., Govind N., Kowalski K., Straatsma T. P., van Dam H. J. J.,
Wang D., Nieplocha J., Apra E., Windus T. L., de Jong W. A.: Comput. Phys. Commun.
2010, 181, 1477.

19. Lotrich V., Flocke N., Ponton M., Yau A. D., Perera A., Deumens E., Bartlett R. J.:
J. Chem. Phys. 2008, 128, 194104.

20. Pitoňák M., Neogrády P., Řezáč J., Jurečka P., Urban M., Hobza P.: J. Chem. Theory
Comput. 2008, 4, 1829.

21. Pitoňák M., Riley K. E., Neogrády P., Hobza P.: Chem. Phys. Chem. 2008, 9, 1636.
22. Pitoňák M., Janowski T., Neogrády P., Pulay P., Hobza P.: J. Chem. Theory Comput. 2009,

5, 1761.
23. Pitoňák M., Neogrády P., Hobza P.: Phys. Chem. Chem. Phys. 2010, 12, 1369.
24. Aquilante F., Vico L. D., Ferre N., Malmqvist P.-Å., Neogrády P., Pedersen T., Pitoňák M.,

Reiner M., Roos B. O., Serrano-Andrés L., Urban M., Veryazov V., Lindh R.: J. Comput.
Chem. 2010, 31, 224.

25. Rendell A. P., Lee T. J.: J. Chem. Phys. 1994, 101, 400.
26. Neogrády P., Pitoňák M., Urban M.: Mol. Phys. 2005, 103, 2141.
27. Taube A. G., Bartlett R. J.: Collect. Czech. Chem. Commun. 2005, 70, 837.
28. Taube A. G., Bartlett R. J.: J. Chem. Phys. 2008, 128, 164101.
29. Pitoňák M., Neogrády P., Kellö V., Urban M.: Mol. Phys. 2006, 104, 2277.
30. Pitoňák M., Holka F., Neogrády P., Urban M.: J. Mol. Struct. 2006, 768, 79.
31. Dunning T. H., Peterson K. A.: J. Chem. Phys. 2000, 113, 7799.
32. Scuseria G. E., Janssen C. L., Schaefer III H. F.: J. Chem. Phys. 1998, 89, 7382.
33. Hampel C., Peterson K. A., Werner H.-J.: Chem. Phys. Lett. 1992, 190, 1.
34. Koch H., Christiansen O., Kobayashi R., Jørgensen P., Helgaker T.: Chem. Phys. Lett.

1994, 228, 233.
35. Klopper W., Noga J.: J. Chem. Phys. 1995, 103, 6127.
36. Stanton J. F., et al.: ACES II Program, A Product of the Quantum Theory Project. University

of Florida, 1993.
37. Werner H.-J., et al.: MOLPRO, a Package of ab initio programs, version 2009.2. 2009.

http://www.molpro.net
38. Pedersen T. B., Aquilante F., Lindh R.: Theor. Chem. Acc. 2009, 124, 1.
39. Feyereisen M., Fitzgerald G., Komornicki A.: Chem. Phys. Lett. 1993, 208, 359.
40. Beebe N. H. F., Linderberg J.: Int. J. Quantum Chem. 1977, 7, 683.
41. Koch H., de Meras A. S., Pedersen T. B.: J. Chem. Phys. 2003, 118, 9481.
42. Boström J., Delcey M. G., Aquilante F., Serrano-Andres L., Pedersen T. B., Lindh R.:

J. Chem. Theory Comput. 2010, 6, 747.
43. Aquilante F., Lindh R., Pedersen T. B.: J. Chem. Phys. 2007, 127, 114107.
44. Aquilante F., Lindh R., Pedersen T. B.: J. Chem. Phys. 2008, 129.
45. Aquilante F.: Ph.D. Thesis, Chap. 5. Lund University, Lund 2007. ISBN 978-91-7422-169-5.
46. Nieplocha J., Palmer B., Tipparaju V., Krishnan M., Trease H., Apra E.: Int. J. High Perfom.

Comp. Appl. 2006, 20, 203.
47. Noga J., Valiron P.: Mol. Phys. 2005, 103, 2123.
48. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 404.
49. Watts J. D., Gauss J., Bartlett R. J.: J. Chem. Phys. 1993, 98, 8718.
50. Noga J., Klopper W., Helgaker T., Valiron P.: 2003. A web repository is accessible on

http://www-laog.obs.ujf-grenoble.fr/~valiron/ccr12/
51. Adamowicz L., Bartlett R. J.: J. Chem. Phys. 1987, 86, 6314.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

Novel CCSD(T) Implementation in MOLCAS 741

52. Adamowicz L., Bartlett R. J., Sadlej A. J.: J. Chem. Phys. 1988, 88, 5749.
53. Hobza P., Havlas Z.: Chem. Rev. 2000, 100, 4253.
54. Rulíšek L., Havlas Z.: J. Phys. Chem. 1999, 103, 1634.
55. Fanfrlík J., Lepšík M., Horinek D., Havlas Z., Hobza P.: ChemPhysChem 2006, 7, 1100.

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 6, pp. 713–742

742 Pitoňák, Aquilante, Hobza, Neogrády, Noga, Urban:

